A model selection method for S-estimation

نویسندگان

  • Arie Preminger
  • Shinichi Sakata
چکیده

In least squares, least absolute deviations, and even generalized M-estimation, outlying observations sometimes strongly influence the estimation result, masking an important and interesting relationship existing in the majority of observations. The S-estimators are a class of estimators that overcome this difficulty by smoothly downweighting outliers in fitting regression functions to data. In this paper, we propose a method of model selection suitable in S-estimation. The proposed method chooses a model to minimize a criterion named the penalized S-scale criterion (PSC), which is decreasing in the sample S-scale of fitted residuals and increasing in the number of parameters. We study the large sample behavior of the PSC in nonlinear regression with dependent, heterogeneous data, to establish sets of conditions sufficient for the PSC to consistently select the model with the best fitting performance in terms of the population S-scale, and the one with the minimum number of parameters if there are multiple best performers. Our analysis allows for partial unidentifiability, which is often a practically important possibility when selecting one among nonlinear regression models. We offer two examples to demonstrate how our large sample results could be applied in practice. We also conduct Monte Carlo simulations to verify that the PSC performs as our large sample theory indicates, and assess the reliability of the PSC method in comparison with the familiar Akaike and Schwarz information criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques

Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...

متن کامل

برآورد دوزهای هدف با استفاده از روش MCPMod در مطالعات دوز-پاسخ

Background and Objective: Determining adequate model and estimation of target dose with high precision is a key goal in dose-response studies. MCPMod is a new method that used for model selection and estimation of target doses and unlike other methods it does not have any limitation.  In this method, selection of models has performed by hypothesis testing also increasing responses that are a cr...

متن کامل

Selection of Appropriate Conversion Model for 137CS Method in Erosion and Sediment Studies In Loess Deposits in North-East of Iran

Soil erosion is one of the effective elements on soil destruction. Many empirical and theoretical models has been developed for soil erosion estimation 137 Cs technique is used as new and accurate method in this case across world. For applying this technique on computing erosion and sediment rate, an appropriate conversion model should be selected. For this propose in this study proportional, m...

متن کامل

Estimation of Cadmium and Uranium in a stream sediment from Eshtehard region in Iran using an Artificial Neural Network

Considering the importance of Cd and U as pollutants of the environment, this study aims to predict the concentrations of these elements in a stream sediment from the Eshtehard region in Iran by means of a developed artificial neural network (ANN) model. The forward selection (FS) method is used to select the input variables and develop hybrid models by ANN. From 45 input candidates, 13 and 14 ...

متن کامل

A New Optimized Hybrid Model Based On COCOMO to Increase the Accuracy of Software Cost Estimation

The literature review shows software development projects often neither meet time deadlines, nor run within the allocated budgets. One common reason can be the inaccurate cost estimation process, although several approaches have been proposed in this field. Recent research studies suggest that in order to increase the accuracy of this process, estimation models have to be revised. The Construct...

متن کامل

Improvement of effort estimation accuracy in software projects using a feature selection approach

In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005